Using Independent Component Analysis to process near infrared hyperspectral images for detecting powder food adulteration

Puneet Mishra¹, Christophe B.Y. Cordella², Douglas N. Rutledge², Pilar Barreiro³, Jean Michel Roger⁴, Belén Diezma³

 ¹ Vision Lab, Campus Drie Eiken, University of Antwerp, Belgium
² UMR Ingénierie Procédés Aliments, AgroParisTech, Inra, Université Paris-Saclay, 91300 Massy, France
³LPF-Tagralia, Universidad Politécnica de Madrid, Spain
⁴Irstea, UMR ITAP, Montpellier, France

Blind Source Separation

Different pure sources combined to make one mixed signal

Theory of ICA

- Each observed sensor signal is assumed to be weighted sum of pure source signals.
- Weighting coefficients are proportional to concentrations of pure compounds :

 $x_1 = a_{11} \times s_1 + a_{12} \times s_2$ $x_2 = a_{21} \times s_1 + a_{22} \times s_2$

• In matrix notation :

$$X = A \times S \qquad \dots (1)$$

Procedure

- ICA calculates a demixing matrix, W
- W approximates A⁻¹, the inverse mixing matrix
- Pure component signals are recovered from measured mixed signals:

S=W×X

Algorithm used

- Joint Approximation Diagonalization of Eigenmetrices (JADE) algorithm
- Based on fourth order moment (Kurtosis)
- Gaussian distributions possess zero excess kurtosis
- JADE seeks **rotation** of mixed vectors to estimate source vectors with high kurtosis values.

Perform ICA by splitting data into two blocks and comparing correlations of ICs extracted from the two data blocks.

Peanut allergy

- Peanut allergy is a potentially life-threatening condition.
- European Directive **2003/89/EC** makes the labeling of all ingredients mandatory, especially food allergens used in the recipes of packaged foods.
- **Ubiquitous nature of peanut** in food industry makes dietary avoidance difficult, **a risk still persists**.

Sample preparation

- Sample mixtures of peanut in wheat flour 0.05 % and 0.01 % by weight
- Size of the ground nuts **500-1000µm** (EU-Institute for Reference Materials and Measurements)
- Particle size of wheat flour **100-212µm**
- Aluminum platform for sample representation

Camera specification

- Line-scan push-broom camera : HySpex (SWIR 320m-e)
- Spectral range 1000–2500 nm
- Spectral sampling every 6 nm and 256 spectral bands.

• Pixel size **408** × **261** μm

Puneet Mishra, Belén Diezma and Pilar Barreiro Universidad Politécnica de Madrid

NIR hyperspectral imaging for detection of nut contamination

Hyperspectral camera setup

Spectral profiles of pure samples

(a). Mean spectra

(b). Spectra after treatment (SNV)

Random ICAbyblocks

- Two blocks
- Performed up to **20 ICs**
- With **10** repetitions
- 7 ICs had high correlations

Red: High correlation

Blue: Low correlation

IC signals

- IC1 related to non-chemical variation
- At every peak in pure spectra, IC1 is tending to zero
 - Bigger particle size of peanut could be a reason

•13

IC2 and IC7 related to starch

(a). Starch (2100 nm)

(b). OH stretching Starch (1580 nm)

• Wheat flour has higher starch

1600

2000

1800

2000

2200

IC3 and IC6 related to moisture

(a). OH stretching (1940 nm)

(b). OH stretching (1450 nm)

• Wheat flour has higher moisture

IC4 and IC5 related to fatty acid

(a). Amide function (2030 nm)

(b). Fatty acid and overtone (1734, 1395, 1200 nm)

Peanut has higher fatty acid and amide

Synthetic Unmixing Signal

Calculate the difference between the sum of peanut ICs and the sum of wheat flour ICs

Signal (S) = IC1+IC4+IC5 - (IC2+IC3+IC6+IC7)

X = Unfolded hyperspectral image

S = Synthetic unmixing signal

S^T = Transpose of synthetic signal

A = Proportions values

Validation of synthetic signal

- A hyperspectral image with known position of peanut was simulated.
- Synthetic signal was tested for classification.
- **High contrast** was **obtained** for pixels representing peanuts.

Image segmentation

- **Connected Component labeling** to detect pixels with enhanced contrast.
- Classification map generated with manual threshold.
- **Regionprop** function in Matlab was used to extract spatial locations

Results

Before processing (0.05 %)

After processing

Proportions images and extracted features image for 0.05% peanut traces in wheat flour (146 × 464 pixels).

Before processing (0.01 %)

After processing

Proportions images and extracted features image for 0.01% peanut traces in wheat flour (146 × 464 pixels).

Conclusions

- Detection of peanut traces was possible down to 0.01 %.
- ICA provided an easy understanding of underlying source signals
- Source signals can be easily used for classification and regression analysis.
- HSI with ICA can be used for quantitative prediction of the chemical constituents, with simultaneous representation of their spatial distribution.

Thank you

Peanuts free zone!