

CHIMIOMETRIE XVII January 18-20th, Namur, Belgium

Application of similarity parameters to discriminate and classify herbal medicines

Johan Viaene¹, Goedele Alaerts¹, Bieke Dejaegher^{1,2} Yvan Vander Heyden¹

¹Department of Analytical Chemistry and Pharmaceutical Technology (FABI), Center for Pharmaceutical Research (CePhar), Vrije Universiteit Brussel (VUB), Laarbeeklaan 103, B-1090 Brussels, Belgium

²Laboratory of Instrumental Analysis and Bioelectrochemistry, Institute of Pharmacy, Université Libre de Bruxelles (ULB), Campus Plaine CP205/6, Boulevard du Triomphe, B-1050 Brussels, Belgium

Introduction

Chromatographic fingerprints

.....

Introduction

- Chromatographic fingerprints
- Applications
- Similarity analysis
- Distance- and correlation based parameters ^a
 - Euclidean distance

$$de(\mathbf{x}_1, \mathbf{x}_2) = \sqrt{\sum_{j=1}^q (x_{1j} - x_{2j})^2}$$

congruence coefficient

$$c(\mathbf{x}_1, \mathbf{x}_2) = \frac{\sum_{j=1}^{q} x_{1j} x_{2j}}{\sqrt{\sum_{j=1}^{q} x_{1j}^2 \sum_{j=1}^{q} x_{2j}^2}} =$$

Standardized Euclidean distance

$$ds(\mathbf{x}_1, \mathbf{x}_2) = \sqrt{\sum_{j=1}^{q} [(x_{1j} - x_{2j})/s_j]^2} \quad \text{with} \quad s_j = \sqrt{\frac{1}{p} \sum_{i=1}^{p} (x_{ij} - \bar{x}_j)^2}$$

- Mahalanobis distance $dm(\mathbf{x}_1, \mathbf{x}_2) = \sqrt{(\mathbf{x}_1 - \mathbf{x}_2)^T \mathbf{C}^{-1}(\mathbf{x}_1 - \mathbf{x}_2)}$
- Adapted Similarity score

^a Alaerts et al., Journal of Chromatography B, 910 (2012) 61– 70

correlation coefficient

$$r(\mathbf{x}_1, \mathbf{x}_2) = \frac{\operatorname{cov}(\mathbf{x}_1 \mathbf{x}_2)}{\frac{s_{x1} s_{x2}}{s_{x1}}}$$

Case study

- 3 Curcuma types in Pharmacopoeia of the People's Republic of China:
 - 32 Rhizoma Curcumae longae (Jianghuang) samples
 - Species: C. longa
 - Plant part: dried rhizome

- 29 Rhizoma Curcumae (Ezhu) samples

- Species: C. phaeocaulis/C. kwangsiensis/C. wenyujin
- Plant part: dried rhizome

- 32 Radix Curcumae (Yujin) samples

- Species: C. wenyujin/C. longa/C.kwansiensis/C.phaeocaulis
- Plant part: dried root tuber

Case study

- 3 Curcuma types in Pharmacopoeia of the People's Republic of China:
 - 32 Rhizoma Curcumae longae (Jianghuang) samples
 - Species: C. longa
 - Plant part: dried rhizome

- 29 Rhizoma Curcumae (Ezhu) samples

- Species: C. phaeocaulis/C. kwangsiensis/C. wenyujin
- Plant part: dried rhizome

- 32 Radix Curcumae (Yujin) samples

- Species: C. wenyujin/C. longa/C.kwansiensis/C.phaeocaulis
- Plant part: dried root tuber

Similarity parameters (Euclidean distance) applicable to distinguish the 3 types of Curcuma samples?

Preparation of extracts

- 1.5 g powdered and sieved
- 20.0 mL extraction solvent: ethanol/water (80/20 V/V)
- 30 min ultrasonic extraction
- Filter extract + adjust volume to 25.0 mL (extraction solvent)

Registration of fingerprint data

High Pressure Liquid Chromatography

- LaChrom Elite VWR Hitachi (L-2130 pump, L-2200 autosampler, L-2350 column oven, L-2455 diode array detector)
- 4 coupled Chromolith Performance RP-18e C18 columns (100 x 4.6 mm) + guard column at 35°C
- Injection volume: 10 μL
- Mobile phases: water (A) and acetonitrile (B), both + 0.05% trifluoroacetic acid
- Gradient: 0 min: 5% B; 5 min: 33.5%B; 36 min: 60%B; 50-60 min:
- Flow rate: 1mL/min
- Detection wave length: 214 nm
- Each sample analyzed in duplicate
- Daily blank injection in duplicate

Preprocessing

- Blank correction of the fingerprints
- Correlation optimized warping (COW) per Curcuma type
- Alignment of the 3 types (COW)

Division in calibration and test set

- Per sample: calculation of average (n=2) fingerprint
- Division samples in calibration and test set: duplex algorithm
- Check distribution calibration & test set samples: Principal Component Analysis

DISTRIBUTION CALIBRATION & TEST SET FINGERPRINTS IN PC1-PC2 SPACE

FAB

DISTRIBUTION CALIBRATION & TEST SET FINGERPRINTS IN PC1-PC2 SPACE

DISTRIBUTION CALIBRATION & TEST SET FINGERPRINTS IN PC1-PC2 SPACE

FAB

DISTRIBUTION CALIBRATION & TEST SET FINGERPRINTS IN PC1-PC2 SPACE

FAB

Similarity analysis

 Calculation of Euclidean distance (d) between each pair of fingerprints

Similarity analysis

- Upper Warning and Control limits (UWL & UCL ^a) for d per C. type
 - UWL = \bar{d} + 1.96 x s_d \rightarrow 97.5% of d values per C. type < UWL_{C.type}
 - UCL = \bar{d} +3.09 $x s_d \rightarrow$ 99.85% of d values per C. type < $UCL_{C.type}$

FABI

Similarity analysis

- How to use these limits?

Global behavior relative to $UWL_{C. longa}$ and $UCL_{C. longa}$ differs per C. type!!!

Similarity analysis Green horizontals: UWL_{C.rhizoma} Red horizontals: UCL_{C.rhizoma} How to use these limits? d from C. rhizoma calibration samples d from C. radix calibration samples d from C. longa calibration samples to C. rhizoma calibration samples to C. rhizoma calibration samples to C. rhizoma calibration samples

Global behavior relative to UWL_{C. rhizoma} and UCL_{C. rhizoma} differs per C. type!!!

Similarity analysis – How to use these limits?

Green horizontals: UWL_{C.radix} Red horizontals: UCL_{C.radix}

Global behavior relative to UWL_{C. radix} and UCL_{C. radix} differs per C. type!!!

Similarity analysis

Identification of outliers

Similarity analysis

Identification of outliers

Similarity analysis

- Deriving discrimination/classification rules

Sample	Known Class	% UCL C. longa exceedings	% UWL C. longa exceedings	% UCL C. rhizoma exceedings	% UWL C. rhizoma exceedings	% UCL C. radix exceedings	% UWL C. radix exceedings
1	C. longa	0	7	3	40	100	100
2	C. longa	0	5	25	65	100	100
3	C. longa	0	0	100	100	100	100
4	C. longa	0	0	100	100	100	100
5	C. longa	0	0	100	100	100	100
6	C. longa	0	0	100	100	100	100
7	C. longa	0	7	18	50	100	100
8	C. longa	0	7	20	80	100	100

Similarity analysis

- Deriving discrimination/classification rules

- To distinguish C. samples only UCL values necessary
- C. longa sample if:
 - d to \leq 1% of C. longa calibration samples exceeds $UCL_{C. longa}$
 - d to > 1% of C. rhizoma calibration samples exceeds $UCL_{C. rhizoma}$
 - d to > 1% of C. radix calibration samples exceeds $UCL_{C. radix}$
- C. rhizoma sample if:
 - d to \leq 1% of C. rhizoma calibration samples exceeds UCL_{C. rhizoma}
 - d to > 1% of C. radix calibration samples exceeds $UCL_{C.radix}$
- C. radix sample if:
 - d to > 1% of C. longa calibration samples exceeds $UCL_{C.longa}$
 - d to \leq 1% of C. rhizoma calibration samples exceeds $UCL_{C. rhizoma}$
 - d to \leq 1% of C. radix calibration samples exceeds $UCL_{C. radix}$
- Samples not compliant to these rules: outliers

Application of Euclidean distance based classification/ discrimination rules and comparison with classical discrimination/classification methods

- Linear and Quadratic Discriminant Analysis
- Soft Independent Modelling by Class Analogy (nearest class)

DISCRIMINATION/ CLASSIFICATION TECHNIQUE	CCR CALIBRATION SET	CCR TEST SET	DISCRIMINATION/ CLASSIFICATION TECHNIQUE	NUMBER OF RETAINED
EUCLIDEAN DISTANCE	0.9516	0.9667	LDA	16
LDA	0.9921	0.8167	QDA	1
QDA	0.9841	0.9833	SIMCA	1 (C. longa), 2 (C.
SIMCA	0.3492	0.3333		rhizoma), 3 (C. radix)

Euclidean distance based classification ≈ best discriminant analysis technique (QDA)

Conclusions

- Euclidean distance was succesfully used to eliminate outliers in the Radix Curcumae fingerprints
- Rizoma Curcumae longae, Rhizoma Curcumae and Radix Curcumae samples can be distinguished based on Euclidean distances
- Euclidean distance based discrimination/classification performs almost equal to best discrimination technique

Acknowledgements

- To the co-authors for their contributions!
- To you for your kind attention

