Chimiométrie 2016 – Namur (Belgique) – 19-01-2016

Méthode d'orthogonalisation pour améliorer la robustesse des applications NIR en ligne

<u>Dubuc Perrine</u>¹, Montagnier Safia¹, Guilment Jean¹ <u>Lallemand Jordane</u>² et Roussel Sylvie²

¹ ARKEMA - CERDATO / Laboratoire d'Étude des Matériaux (LEM) - Route du Rilsan, 27470 Serquigny – France - <u>perrine.dubuc@arkema.com</u>

² Ondalys - 4 rue Georges Besse, 34830 Clapiers, France - <u>jlallemand@ondalys.fr</u>

MATÉRIAUX HAUTE PERFORMANCE SPÉCIALITÉS INDUSTRIELLES COATING SOLUTIONS

Arkema, Acteur mondial de la chimie de spécialités Premier chimiste Français

* Chiffres pro forma 2014

arkema.com

Sommaire

- Description du procédé
- Développement du NIR at-line
- Développement du NIR on-line
- Problème de robustesse du modèle on-line
- Comparaison de solutions pour améliorer la robustesse des modèles on-line

Polymérisation en phase solide de poudres par spectroscopie Proche Infrarouge

- Polymérisation par voie solide
- Élimination d'eau dans une enceinte chauffée et sous vide
- Passage d'une visco de 0.5 à environ 1 (0.9 à 1.2)
- Spécifications en visco de 0.05 à 0.12

Suivi NIR at-line de la polymérisation

☺ Sensibilité de la mesure NIR à :

- La température de l'échantillon
 - → Etalonnage à température ambiante
 - → Attente d'environ 10 minutes avant toute mesure
- La teneur en eau

ARKEMA

- → Etalonnage sur produit sec
- → Mesure directement à l'atelier

© Le spectre NIR contient une information sur la longueur des chaînes polymères

O Possibilité de corréler le NIR avec la visco $\eta = KM_w^{\alpha}$ avec $\alpha \sim 0.5$

➔ Possibilité d'effectuer la mesure « at-line »

- Temps de mesure de l'ordre de la minute
- Mesure sans contact à travers le flacon
- Mesure par les opérateurs de production

© Méthode NIR at-line équivalente à Référence

Pour aller plus vite.... Suivi NIR on-line de la polymérisation

Mesure en réflexion diffuse dans les poudres

ARKEMA

Evolution du spectre NIR avec la température

Effet de la montée en température sur le spectre proche infrarouge

→ Etalonnage sur les spectres au palier de température à 160° C

Exemple de suivi de réactions en ligne : usine

Conclusion

• Analyse NIR « at-line » dans l'atelier

- Pilotage par NIR
- Résultats équivalents à la mesure de référence
- Étalonnage réalisé à température ambiante et sur produit sec
- Temps de réponse divisé par 8 à 10 par rapport à la méthode de référence
- Modèles transférables entre plusieurs spectromètres
- Importance du suivi des appareils (précision en nombres d'onde sur la vapeur d'eau, variation inférieure à 0.1 cm⁻¹)

• Analyse NIR « on-line »

- Étalonnage à partir des spectres au palier à 160C en les corrélant aux valeurs NIR at-line
- Temps de réponse divisé par 8 à 10 par rapport au NIR at-line
- 1 mesure toutes les minutes pour plus de précision dans l'arrêt de la polymérisation
- Logiciel "process" permet de transmettre les données directement vers l'automate de contrôle de la production
- Suivi de la viscosité avec déclenchement sur la distance de Mahalanobis

On va plus vite, mais...

Prédiction de la viscosité et de la distance de Mahalanobis au cours du temps en 2014

10

Donnez du sens à vos données Making sense of your data

🍽 ondalys

Prestation de services et formations en chimiométrie

Méthodes

- Diagnostic du problème de prédiction en ligne
 - Problème détecté en 2014
 - Et retrouvé sur 2015...
- Comparaison de diverses stratégies pour l'amélioration de la robustesse du modèle en ligne sur 2014 et 2015
 - Modèle PLS exhaustif
 - Besoin de **nombreux** échantillons perturbés et de leur valeur de référence
 - © Modèle valable même si la perturbation disparait
 - © Facile à implémenter
 - Modèle PLS orthogonalisé (DOP¹)
 - © Besoin de **peu** d'échantillons perturbés et de leur valeur de référence
 - © Modèle valable même si la perturbation disparait
 - 🙁 N'existe pas dans les logiciels commerciaux
 - 😕 Besoin d'une expertise

¹ M. Zeaiter, , J.M. Roger and V. Bellon-Maurel, Dynamic orthogonal projection. A new method to maintain the on-line robustness ofmultivariate calibrations. Application to NIR-based monitoring of wine fermentations Chemometrics and Intelligent Laboratory Systems, volume 80, Issue 2, 15 February 2006, Pages 227-235

Méthodes

Dynamic Orthogonal Projection (DOP) en 7 étapes !

Résultats

• Prédictions 2014

RPD

0.48

2.47

Résultats

• Prédictions 2015 : validation des modèles

🍤 ondalys

Résultats

- Correction des spectres par DOP
- → Détection de plusieurs sources de variation

ARKEMA

- problèmes liés à la température, background

Comparaison des spectres de recalage avant et après correction DOP

Conclusions

- Problème de robustesse constaté en ligne
- Modèle exhaustif, c'est bien
- ③ Modèle orthogonalisé, c'est mieux
 - Identification de la perturbation
 - Applicable d'une année sur l'autre
 - Valide même quand la perturbation disparait
 - Pas besoin d'orthogonaliser les nouveaux spectres

② Pas disponible sur les logiciels équipementiers NIR

Namur, Belgique du 17 au 20 Janvier 2016

Merci pour votre attention !

INIOME

2016

m

0